Contrasting mechanisms of proteomic nitrogen thrift in Prochlorococcus.
نویسندگان
چکیده
Organisms limited by carbon, nitrogen or sulphur can reduce protein production costs by transitions to less costly amino acids, or by reducing protein expression. These alternative mechanisms of nutrient thrift might respond differently to selection, but this possibility remains untested. We hypothesized that relatively invariant sequence composition responds to long-term variation in nutrient concentrations, whereas dynamic expression profiles vary with nutrient predictability. Prolonged nutrient scarcity favours proteome-wide nutrient reduction. Under stable, nonfluctuating nutrient availability, reduction of nutrient content typically occurs in proteins upregulated when nutrient availability is low, e.g. assimilation and catabolism. We suggest that fluctuating nutrient availability favours mechanisms involving short-term downregulation of nutrient-rich proteins. We analysed protein nitrogen content in six high-light, low-nutrient adapted (HL) vs. six low-light, high-nutrient adapted (LL) Prochlorococcus (marine cyanobacteria) strains, alongside expression data under experimental nitrogen and phosphorus limitation in two strains, MED4 (HL) vs. MIT9313 (LL). HL strains contained less nitrogen, but DNA GC content confounded this relationship. While anabolic and catabolic proteins had normal nitrogen content, most strains showed reduced nitrogen in typical nitrogen stress response proteins. In the experimental data set, though, proteins upregulated under nitrogen limitation were nitrogen-poor only in MIT9313, not MED4. MIT9313 responded similarly to nitrogen and phosphorus limitation, with slow, sustained downregulation of nitrogen-rich ribosomal proteins. In contrast, under nitrogen but not phosphorus limitation, MED4 rapidly downregulated ribosomal proteins. MED4's specific, rapid nitrogen response suggests adaptation to fluctuating conditions, supporting previous work. Thus, we identify contrasting proteomic nitrogen thrift mechanisms within Prochlorococcus consistent with different nutrient regimes.
منابع مشابه
In vivo regulation of glutamine synthetase activity in the marine chlorophyll b-containing cyanobacterium Prochlorococcus sp. strain PCC 9511 (oxyphotobacteria).
The physiological regulation of glutamine synthetase (GS; EC 6.3.1.2) in the axenic Prochlorococcus sp. strain PCC 9511 was studied. GS activity and antigen concentration were measured using the transferase and biosynthetic assays and the electroimmunoassay, respectively. GS activity decreased when cells were subjected to nitrogen starvation or cultured with oxidized nitrogen sources, which pro...
متن کاملWidespread metabolic potential for nitrite and nitrate assimilation among Prochlorococcus ecotypes.
The marine cyanobacterium Prochlorococcus is the most abundant photosynthetic organism in oligotrophic regions of the oceans. The inability to assimilate nitrate is considered an important factor underlying the distribution of Prochlorococcus, and thought to explain, in part, low abundance of Prochlorococcus in coastal, temperate, and upwelling zones. Here, we describe the widespread occurrence...
متن کاملGlutamine Synthetase Sensitivity to Oxidative Modification during Nutrient Starvation in Prochlorococcus marinus PCC 9511
Glutamine synthetase plays a key role in nitrogen metabolism, thus the fine regulation of this enzyme in Prochlorococcus, which is especially important in the oligotrophic oceans where this marine cyanobacterium thrives. In this work, we studied the metal-catalyzed oxidation of glutamine synthetase in cultures of Prochlorococcus marinus strain PCC 9511 subjected to nutrient limitation. Nitrogen...
متن کاملQuantitative Proteomics Shows Extensive Remodeling Induced by Nitrogen Limitation in Prochlorococcus marinus SS120
Prochlorococcus requires the capability to accommodate to environmental changes in order to proliferate in oligotrophic oceans, in particular regarding nitrogen availability. A precise knowledge of the composition and changes in the proteome can yield fundamental insights into such a response. Here we report a detailed proteome analysis of the important model cyanobacterium Prochlorococcus mari...
متن کاملProchlorococcus contributes to new production in the Sargasso Sea deep chlorophyll maximum
[1] Prochlorococcus is ubiquitous in tropical oceans, but its biogeochemical role is not well constrained. For example, cultured Prochlorococcus clones do not grow on NO3 !, but these cultured clones may only represent 10–15% of the natural population variance resulting in a biased biogeochemical role. We report NO3 !, NO2 !, NH4 + and urea uptake rates for flow-cytometrically sorted Sargasso S...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular ecology
دوره 20 1 شماره
صفحات -
تاریخ انتشار 2011